Side-channel security of superscalar CPUs

Evaluating the Impact of Micro-architectural Features

Alessandro Barenghi
Politecnico di Milano — DEIB
Piazza Leonardo da Vinci, 32. 20133, Milan, Italy
alessandro.barenghi@polimi.it

ABSTRACT

Side-channel attacks are performed on increasingly complex targets,
starting to threaten superscalar CPUs supporting a complete oper-
ating system. The difficulty of both assessing the vulnerability of a
device to them, and validating the effectiveness of countermeasures
is increasing as a consequence. In this work we prove that assess-
ing the side-channel vulnerability of a software implementation
running on a CPU should take into account the microarchitectural
features of the CPU itself. We characterize the impact of microar-
chitectural features and prove the effectiveness of such an approach
attacking a dual-core superscalar CPU.

CCS CONCEPTS

« Security and privacy — Embedded systems security; Side-
channel analysis and countermeasures;

KEYWORDS

Side Channel Attacks, Superscalar microarchitecture

ACM Reference Format:

Alessandro Barenghi and Gerardo Pelosi. 2018. Side-channel security of
superscalar CPUs: Evaluating the Impact of Micro-architectural Features. In
DAC ’18: DAC ’18: The 55th Annual Design Automation Conference 2018, June
24-29, 2018, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3195970.3196112

1 INTRODUCTION

Side-channel Attacks (SCAs) are one of the most effective threats
to breach the security of implementations of standardized, mathe-
matically strong, cryptographic primitives. During the years, the
target range for SCAs has steadily grown from smart-cards and
dedicated accelerators, to micro-controllers [14], up to the point
where single core CPUs have been shown to be vulnerable [8], and
laptop grade CPUs have been shown to exhibit exploitable leak-
age, although with coarse grained models [13]. However, with an
increasingly complex target, validating its vulnerability to SCAs
as well as devising reliable and efficient countermeasures has also
proven to be more and more difficult. In particular, considering
software countermeasures, the theoretical assumption that no com-
bination among given sets of intermediate values takes place, must

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06...$15.00
https://doi.org/10.1145/3195970.3196112

Gerardo Pelosi
Politecnico di Milano — DEIB
Piazza Leonardo da Vinci, 32. 20133, Milan, Italy
gerardo.pelosi@polimi.it

be faithfully matched by the actual implementation [7]. Conse-
quently, the current state-of-the-art in implementations assumes
that countermeasures are realized preventing accidental value com-
binations such as the ones caused by register reuse, typically with
careful assembly implementations. Whilst this approach serves
well the purpose of smart-cards development environments, in the
more recent Internet-of-Things (IoT) domain, (small) companies
in need of either implementing or deploying side-channel secure
cryptographic primitives, require tools and models able to provide
a first assessment of the side-channel vulnerability of their software
implementation running on a range of platforms. These platforms
are likely to encompass scalar microcontrollers (e.g., ARM Cortex
MO), superscalar microcontrollers (e.g., ARM Cortex M7), and full
fledged dual core CPUs, depending on the application scenario [16].
To this end, providing a model of execution of the software from a
side-channel leakage point of view, possibly in a form which can
be integrated in static analysis tools as well as compilers, is a task
which has gained interest also in the research community [16, 19].
Such tools and methods are expected to significantly reduce the
delay of the feedback loop from security evaluation to development,
integrating deeper security analysis as a part of the implementa-
tion process. For such tools to be developed, an understanding
of how changes in the CPU microarchitecture map onto different
side-channel leakage behaviors, is crucial. Indeed, while ensuring
the correct execution requires only that the object code matches
the underlying CPU at Instruction Set Architecture (ISA) level, we
maintain that establishing the extent of the side-channel leakage
of an implementation depends on both the ISA and the microarchi-
tectural features of the underlying processor. While their impact
on scalar pCs is limited, not taking into account the microarchi-
tectural structure of the CPU executing the code may invalidate
(partially or fully) the effectiveness of the countermeasures em-
ployed [10]. A critical case where this aspect comes into play is
providing portable side-channel security, i.e., guaranteeing that a
software side-channel resistant library preserves both its functional
properties, and its side-channel security when executed on differ-
ent, ISA-compliant, processors.

Contributions. In this paper, we analyze how the execution of a
software primitive is performed by a superscalar CPU to highlight
the importance of the microarchitectural features in pinpointing
the sources of information leakage. In particular, we show how
the sharing of internal pipeline buffers during the device activity
is responsible for a critical information leakage, which cannot be
recognized from an assembly representation of the program as it
is not stemming from data dependencies among instructions. We
also highlight how apparently innocuous changes to the register
allocation in a secure implementation may lead to a practical vul-
nerability. As a case study, we consider the superscalar, partial-dual

issue, 8 stages pipeline core CPU of an ARM Cortex-A7, providing
a characterization of its information leakage sources. Moreover, we
describe how to use the timing side-channel information stemming
from the Clock cycles Per Instruction (CPI) index on a set of micro-
benchmarks to infer a likely structure of the pipeline, a method
which may be of independent use from the purpose of this work.
We validate the effectiveness of our model via precisely justifying
the success of an attack against an implementation of the AES block
cipher, running both on the bare metal, and on a Linux distribution.

2 BACKGROUND AND RELATED WORK

SCAs exploit the link between the data being processed by a digital
computing platform and one (or more) environmental parameters of
the platform itself, such as its power consumption, Electro-Magnetic
(EM) radiations or computing time. A differential power/EM attack
works as follows [14]. Given the measurements, the attacker tries to
deduce the correct value of the secret key employed by the crypto-
graphic implementation, modeling the power consumption induced
by a small portion of the computation, which in turn depends only
on a small portion of the secret key, and comparing models with
the actual measurements. As a result of the said comparison the
attacker finds out the model which best fit the measurements, and
consequently the actual value of the involved secret key bits. Since
the side-channel measurements are affected by both random and
systematic noise, the goodness of fit of a model to the actual device
behavior is performed with statistical tests.

One of the points touted as an advantage of SCAs is that the
power consumption model of the computation may be quite un-
aware of hardware/software stack details [2-4, 14] (e.g., a common
model is the Hamming weight of an intermediate value of the algo-
rithm). Indeed, such effectiveness was proven by successful attacks
to complex computing platforms such as an unprotected software
AES implementation running on a superscalar single core CPU
clocked at 1 GHz and with full-fledged Linux OS [8]. In particular,
in [8] the authors show how the high working frequency of the
target device and the presence of an operating system with a pre-
emptive scheduler offer hindrances which can be overcome by an
attacker, while considering as a consumption model the Hamming
weight of the outputs of the algorithm instructions. Similarly, ex-
ploiting the private-key dependent control flow of the code at hand,
the authors of [13] extract the private-key of a digital signature
algorithm running on both a mobile phone and a laptop. We note
that the control flow dependent leakage can be suppressed more
easily w.r.t. the data dependent leakage exploited in [8].

From a designer standpoint, countermeasures to SCAs can also
be applied keeping into account a coarse leakage model [10, 11].
This is usually done since micro-architectural level specification of
CPUs may not be freely available or known. However, two works
sharing our research direction [18, 19] show unexpected leakage
behaviors from software block ciphers implemented on an a AVR 8-
bit microcontroller explainable only with a more detailed execution
model. In [18, 19], the authors prove that the computing platform
reveals information on the Hamming distance between the con-
tents of two independent destination registers of two subsequent
instructions due to register file write-port sharing. This leakage
(from an ISA point-of-view) breaks provably secure countermea-
sure schemes implemented with state of the art assembly code [18].

Write
ALU Back

Fetch Decode Issue FPU/Neon

i

Load/Store Unit

Figure 1: ARM Cortex A7 MPcore pipeline logical view [6]

We differentiate from the aforementioned ones in tackling a su-
perscalar CPU architecture in our characterization, highlighting
how its execution model, while semantically equivalent to a scalar
one, inserts a non negligible amount of potential pitfalls for the
sound realization of side-channel countermeasures. The results of
our work can be fruitfully integrated into both static analysis tools,
such as [16], and countermeasure checking tools, such as [11], to
enhance their effectiveness. Striving toward the goal of providing
portable side-channel security, our findings are also amenable to
be integrated in compiler based approaches, such as [1]. Indeed,
to provide a protected code emission matching the microarchitec-
tural leakage model, constraints in the register allocation and the
instruction scheduling backend passes can be added.

3 MICROARCHITECTURAL EXPLORATION

In this section, we present the method employed to determine
details of the Cortex-A7 CPU microarchitecture. This investigation
is not required if a Hardware Description Language specification
of the CPU is available, but that may not be the case due to its cost.

3.1 Logic-level Description of the Cortex-A7

The ARM Cortex-A7 MPCore [6] is a dual-core, partial dual-issue, in-
order CPU, with an 8 stages pipeline. The reference manual reports
alogic level view of the CPU pipeline as depicted in Figure 1, where
each block in the picture represents a stage of the pipeline taking
one cycle to execute. The CPU is described to be partial dual-issue,
specifying that not all pairs of instructions are amenable to be
executed simultaneously. We obtain a more detailed, description of
which instructions are dual-issued through examining the machine
description of the ARM Cortex-A7MPCore in the Gcc backend [12],
directly contributed by ARM. While this description adds more
details to the outlook of the reference manual, it does not fully detail
which dual-issue policy is implemented in the cores. Indeed, to
understand the effects of the microarchitecture on the side-channel
leakage we require the knowledge of which pipeline resources
are shared by a pair of consecutive instructions, both in case of
a dual-issue and a single issue execution. In particular, we need
to determine: i) the number of ALUs present, and if they are all
able to compute the same instructions; ii) whether or not units
performing multiple cycle instructions (mul, 1dr, str and shift
according to [6]) are pipelined as Figure 1 would suggest; iii) how
many data buses connect the pipeline stages both in paths going out
of the Register File (RF) component, into the Decode (D) stage, into
the EXecution/MEmory (EX/MEM) stage, and from the EX/MEM
stage back into the RF.

Table 1: Instruction pairs executed in dual-issue by the
Cortex-A7 MPCore CPU. ALU indicates the set of arith-
metic/logic operations save for the mul

mov ALU ALUw/imm mul shifts branch ld/st

mov v v v X v v X
ALU v X v X X v X
ALU w/imm v v v X v v v
branch v v v v v X v
1d/st v X v X X v X
mul X X X X X v X
shifts X X v X X v X

3.2 Microarchitecture Characterization via CPI

To infer the microarchitectural details of the Cortex-A7 MPCore we
employ the information leaked by the Clock cycles Per Instruction
(CPI) achieved on a given instruction sequence. We compare the
CPI indexes of different instruction sequences sharing the same
opcodes, but differentiated by artificially induced Read-After-Write
(RAW) hazards. Hazard free instruction sequences are issued at the
best of the CPU capabilities, while hazard affected ones will not be
dual-issued, allowing us to distinguish if dual-issuing takes place.
To the best of our knowledge, this is the first time CPI data are
employed to deduce the microarchitecture of a CPU.

We selected the Allwinner A20 System-on-Chip (SoC) [5], based
on the Cortex-A7 MPcore as the target implementation of the CPU
for our characterization. The Allwinner A20 was mounted on a com-
mercial Olimex A20-OLinuXino-MICRO development board [17]
which exposes a set of GPIOs connected to the SoC. Our microbench-
mark for an instruction sequence was constituted of 200 repetitions
of an instruction pair, preceded and followed by 100 nops to fully
flush the pipeline state. The benchmarks were written in assembly
and ran directly on the bare-metal, started by the u-BooT boot-
loader. For ease of measurement, the clock of the CPUs in the SoC
was locked to 120 MHz setting the appropriate PLLs, and all the
unused peripherals were clock gated. The time required for the
benchmark execution was measured with a Picoscope 5203 sam-
pling at 500 Msamples/s a GPIO asserted at the beginning of the
computation and deasserted at the end. We derived the number
of clock cycles elapsed between GPIO assertion and deassertion,
subtracting the time required to execute 200 nops and the GPIO
toggling from the measure, and dividing by the clock period. This
allowed us to determine directly the CPI of a given instruction pair
dividing the aforementioned number of clock cycles by the number
of non-nop benchmark instructions. The standard deviation in tim-
ing measurements was within the maximum precision allowed by
our oscilloscope (i.e., £2ns). Since the Allwinner-A20 is endowed
with two level of caches, which may adversely affect deterministic
execution, we iterated in an infinite loop the benchmark patterns so
to warm them up and we measured the average execution time over
30 runs. This allowed us to exploit the caches to ensure a steady sup-
ply of data and instructions to the CPU, preventing unwanted stalls.
We confirmed that a mov instruction sequence without hazards was
running with CPI 0.5 indicating full dual-issuing.

The results of our CPI analysis are summarized in Table 1, show-
ing which instruction pairs were dual-issued by the Cortex-A7.
Concerning the investigation on the number of ALUs (as listed at
point i) in Section 3.1), we deduce that two ALUs are present from
the fact that two arithmetic/logic instructions can be dual-issued

(provided one has an immediate operand), although the ALUs are
not identical. Moreover, only one of the ALUs is endowed with a
barrel shifter on one of the operands (employed to perform shift-
rotate instructions in the ARM ISA) plus a multiplication unit:
this statement can be deduced from the fact that shifts and muls
are never dual-issued with a computational instruction.
Concerning the pipelined implementation of the units (point
ii) in Section 3.1), we report that the CPI of a sequence of either
load or store instructions (free from data hazards) resulted in a
sustained CPI of 1, indicating that the Load Store Unit (LSU) of the
Cortex-A7 is fully pipelined. The fact that the load instructions
are dual-issued (CPI 0.5) with arithmetic instructions employing an
immediate value, is coherent with the fact that address generation
is performed in the Issue Stage (IS) as reported in [12] and thus
does not clobber any ALU. We also observed that the multiplier in
the ALU is fully pipelined, as a sequence of muls achieves CPI 1.
Finally, concerning the data buses structure (point iii) in Sec-
tion 3.1), we are able to deduce from Table 1 that three data buses
are present from the RF to the EX stage, as two arithmetic/logic
instructions are dual-issued only when one of the two employs an
immediate operand, but they are not whenever both require two
operands from the RF. Since a sustained CPI of 0.5 is achieved when
dual-issuing takes place, we assume that two buses connecting the
output of the EX stage back to the RF are present, and that the RF
is thus endowed with two write- and three read-ports. As a final
note, we report that, albeit counter-intuitively, nop instructions are
not dual-issued by Cortex-A7. The findings on microarchitecture of
the Cortex-A7 allows to redraw the pipeline as in Figure 2, where
the Fetch Unit is likely fetching two instructions per clock cycle, as
it sustains the best-case CPI of 0.5 which was observed in practice.

4 SCA CHARACTERIZATION

To characterize the microarchitecture-driven leakage we consider
that gates driving large (capacitive) loads are likely to be the main
source of side channel leakage [15], with a power consumption
which is well modeled by the Hamming distance of two values as-
serted on their outputs in subsequent clock cycles. In this scenario,
employing Pearson’s correlation coefficient between the measured
power consumption and the predicted one was proven to be a sta-
tistically sound side channel distinguisher [9].

We analyzed our test case CPU modeling the possible leakages stem-
ming from: the read-ports of the RF, the inter-stage buffer between
the Issue and the EXecution stage (IS/EX), the inter-stage buffer
between the EXecution stage and the Write-Back stage (EX/WB),
the ALU output buffers, the barrel shifter output buffers, and the
Memory Data Register (MDR) output. Moreover, we consider the
possibility for the LSU to have an internal buffer where sub-word
realignment is made (to support load instructions accessing a half-
word or a single byte). Our measurement setup relies on the same
Picoscope 5203 employed to perform the microarchitectural explo-
ration (Section 3), and a custom loop probe made out of a 50Q coax
cable, exposing 2 mm of the coax core. The probe is connected to
the oscilloscope via two Agilent INA-10386 amplifiers, and is placed
close to the C62 ceramic decoupling capacitor placed on the supply
line of the SoC. We devised a set of seven micro-benchmarks for
the side channel leakage of the Cortex-A7, constituted of small (2 to
4) instruction sequences (see Table 2) and ran them employing ran-
domly generated values at each execution asserting and deasserting

pr1 Register !
Fetch CEISTE tpa
. WP2 File
Unit RP3
Issue
prefetch Unit
refete Decode A
Buffer Unit Immediate
Fetch Decode Issue

ALU (3 stages)

FPU (4 stages)

LSU (3 stages)

Execute / Memory

Write Back

Figure 2: Alleged ARM Cortex A7 pipeline structure according to the deductions possible via CPI analysis

a GPIO before and after to provide a trigger to the oscilloscope. We
took care of eliminating the effect of the cache measuring the exe-
cutions following the first one and avoided the possible boundary
effects with the trigger handling instruction through inserting 100
nops before and after the benchmark sequence. We recorded 100k
power traces for each benchmark, each one obtained as the average
of 16 executions of the benchmark with the same input. We consid-
ered a leakage to be present whenever its power model reported, in
the correct clock cycle, a correlation distinguishable from zero with
a statistical confidence >99.5%. To evaluate separately the leakage
from the RF and the remaining pipeline stages, we pre-charged the
destination register with the expected results of the computational
instructions before each benchmark run.

4.1 Leakage Characterization

Table 2 reports the instruction sequences employed in each bench-
mark and the power models employed to detect the leakage of each
component. The models for all the components but the RF were
derived from switching activity of the component starting from
the signal values taken when the benchmark is run. For the RF, we
considered the leakage of reading the operands of the instruction
onto the IS stage, as the power leakage arising from asserting the
signals onto the write-port was ascribed by us to the EX/WB buffer
output gates — following the common practice employed in EDA
tools of ascribing the power consumption of a signal to its driving
circuit. In Table 2 the models for which we detected a leakage are
reported in red, while the ones for which we detected no significant
value of the Pearson’s correlation coefficient are reported in black.
Register File. We were able to determine that the RF does not
appear to have statistically significant leakage with the considered
number of traces and models (see 3rd column of Table 2). We ascribe
this behavior to a short (capacitive) load on its read-ports, due to
the IS buffers being the actual ones driving the execution units.

IS/EX Buffers. The outputs of the IS/EX buffers present leakage
(see 4th column of Table 2), well modeled by the Hamming distance
between the values of a source operand of an older instruction and
the one of a younger instruction when single issued. Only Hamming
distances between operands in the same source operand position
(i.e., both first or both second operands) show significant leakage,
since they share of the same bus. Moreover, interleaving two movs
with a nop, forces them to be issued on the same ALU shows both
the expected leakage due to the transition between the two operand
values, and a leakage depending on the Hamming weight of the
said operands. We infer the cause to be the implementation of the
nop as a conditional instruction (set never to execute) with zero-
valued operands. Such an implementation is also consistent with

other leakage behaviors, in the EX/WB buffers. Concerning dual-
issued arithmetic instructions (3rd row in Table 2) we note that no
measurable leakage is present among their source operands. This
is reasonable as the said operands are not sharing any resources
before the result of the instructions are computed.

ALU and Shift Buffer. Concerning the leakage from the ALUs
(see 5th and 6th columns of Table 2), we report a leakage depen-
dent on the Hamming weight of the instruction result. We ascribe
it to the way the ALUs were synthesized, which may assert the
result on a previously zero-precharged set of signals. We confirm
the presence of a leakage stemming from the buffer storing the
result of the barrel shifter before it is fed into the ALU. A leakage
proportional to the Hamming weight of the shifted value is present,
albeit comparatively small: its absolute value in correlation is about
% of the average value for the other leakages.

EX/WB buffers. The information leakage of the EX/WB buffers
mirrors the one of the IS/EX buffers, although it is related to the
Hamming distance between the results of subsequent instructions
whenever they are single issued (see 7th column of Table 2). We
recall that such a leakage takes place regardless of the fact that the
two instructions are sharing the destination register, and, more in
general, that the two destination values are in any way related in
the program data-flow. Moreover, we also report that the EX/WB
buffer appears to be leaking also the Hamming weight of the re-
sult of the instructions. Taking into account the time instant when
the leakage appears, we ascribe this effect to the presence of nop
operations before and after the benchmarked instructions. In par-
ticular, we infer that a nop instruction resets the WB bus to zero as
a consequence of an implementation choice. We confirm this fact
repeating the benchmark more than once and observing that the
aforementioned leakage is not present whenever the benchmarked
instructions are not followed by nops. All the leakages which we
deem due to this border effect are marked with a { sign in Table 2.
Memory Data Register (MDR) and Align Buffer. We consider
the MDR as one of the potential leakage sources during load/store
instruction sequences. In fact, we report the presence of an in-
formation leakage proportional to the Hamming distance of two
subsequently loaded values, or two subsequently stored ones. In
particular, even halfword and single byte loads/stores share the
same leakage model, where the power consumption is proportional
to the Hamming distance between full 32-bit words being loaded/-
stored from/to the data cache as a consequence of a either 16- or
8-bit memory instruction. Such a behavior led us to consider the
possible presence of a separate buffer in the LSU where the proper
sub-word value is extracted during sub-word memory operations.

Table 2: Instruction micro-benchmark sequences employed to detect the main leakage sources in the Cortex-A7, and interme-
diate expressions employed to predict them. The expression in red have a statistically sound leakage with 100k measurements,
expressions marked with a | represent leakage due to boundary effects of the nop instructions employed to flush the pipeline

Instruction Dual Register Is/Ex Shift ALU Ex/Wb MDR Align
Sequence Issued File Buffer Buffer buffer Buffer
mov rA, rB; nop rB, rD, B B rBf, rD¥, N B
mov rC, rD No rg,rD rB @ rD rB & rD

add rA, rB, rC No rB, rC, rB, rC, rg, rF, _ rA, rD, rB, rAt, rDF, _ _
add rD, rE, rF rE, rfF rB@®rE, rCerF rC, rg, rf rA®rD

add rA, rB, rC Yes rB, rcC, rB, rC, rE, rF, rA, rD, rB, rAf, rD¥, B B
add rD, rg, n ¢ rk, rf rB&rE, rCc®rfF rC, rg, rf rA®rD

add rA, rB, rC, 1sln N rB, rC, rB, rC, rk, rF, rc < n, rA, rD, rAf, rof, _ B
add rD, rE, rF, 1sln ° rg, rf rB@®re, rC @ rk rF <n rB, rE rA @ rD

1dr rA, [rB] rAt, rCt,

1dr rC, [rD] No rB, rD B N B rA @ rc ra@rc N
strrA, [rB] _ _ rAf, rCt, ~
strrC, [rD] No rB,rD rherc A ® rC rA @ rcC

1dr rA, [rB]; 1drb rC, [rD] No rA, rC B B B rAfT, rCt, rEf, rGT rA @ rC, C @ rG
1dr rE, [rF]; 1drb rG, [rH] rE, rG rA®@rCrCe®rEsrE®rG rC®rErE @ rG

We confirmed its presence (and the side channel leakage), testing
for a leakage proportional to the Hamming distance between two
byte sized values loaded by two 1drb instructions interleaved by
32-bit load instructions 1dr (row 7th in Table 2).

4.2 Superscalar Leakage Modeling

In our characterization we observed the presence of information
leakage which combines values elaborated by potentially algorith-
mically independent instructions on the basis of four causes: i) the
instruction scheduling order; ii) the position of the source operands;
iii) the single or dual-issuing of the said instructions; iv) the poten-
tial data remanence in the LSU buffers.

A combination of factors i) and ii) was shown to be a practical
source of leakage in scalar architectures in [18] even on masking
schemes which were proven to be algorithmically secure: this con-
tinues to be an issue on superscalar architectures. In particular,
even apparently harmless changes to an assembly codebase, such
as swapping the source operands of a commutative operation (e.g.,
xor) may lead to the insurgence of side channel leakage due to
their changed pipeline resource sharing. Such a codebase change
will not be detected by tools considering only the semantics of the
instructions and the register allocation. Moreover, it is also quite
hard to deem harmful in a manual audit of the source code. The
issues caused by point i) and ii) are worsened by the effects of
dual-issuing (point iii)) as even leakage stemming from the com-
bination of source operands of non consecutive instruction may
take place in case the instruction in between them is dual issued
with the older one. Such a point further states the importance of
instruction scheduling among data independent instructions as a
mean to prevent side channel leakage, an aspect which up to now
was neglected. We note that dual-issuing may also be fruitfully em-
ployed to enhance the security of a software implementation of a
masking scheme, providing the means to perform the computation
of two shares in parallel, yielding a closer mimicry of a registered
hardware computation of them.

The presence of side channel leakage caused by non contiguous
instructions as the one exhibited in point iii) is further exacerbated

by data remanence (point iv)) in the MDR and LSU buffers. In
particular, the results of an entire computation performed in the
registers may be accidentally combined with the last loaded/stored
values, again giving rise to potentially harmful side channel leakage.

Finally, we also recall that inserting nop operations, while leaving
the code semantically equivalent to the non modified one, may add
leakage modes to it, in our Cortex-A7 implementation. It may be
the case that the nop operations are semantically neutral, but not
security neutral, which may be regarded as an unexpected fact.

However, despite the complexity of the leakage model of a super-
scalar CPU, we note that all the aforementioned considerations can
be fruitfully integrated side channel resistant software development
toolchain, yielding an effective benefit for developers.

5 EXPERIMENTAL VALIDATION

To provide a validation of our analysis we employ it to examine
the results of an attack to a reference implementation of AES-128
running on our characterized platform and employing a non mi-
croarchitecture aware leakage model: the Hamming weight of an
output byte from the SUBBYTESs primitive of the cipher. Figure 3
reports the results of the attack performed on 100k power consump-
tion traces, collected with the same setup described in Section 4,
depicting the results for a portion of the first AES round. The first
point showing leakage in time is within the SUBBYTES primitive and
it corresponds to the load and subsequent store of the value from
the AES substitution table during the computation of the look-up.
The significant leakage matches our observations on the leakage
of store operations, which was the highest among the detected
ones. While computing the SHIFTROWSs primitive, the same coarse
grained leakage model matches instructions unrelated to the Sus-
ByTES, but employing its output values. The first detectable leakage
in the SHIFTROWS, is when the output byte from the SUBBYTES is
loaded into a register, followed by three leaking time instants where
the said register is shifted progressively by one byte at once to com-
pose the result of the primitive. Finally the result is stored back
into memory causing a further leakage. The last leakage appear-
ing in the SHIFTROWS primitive is when the MDR, which contains

Eg 0.1 ARK SB SHR % MC

8

§ 0.05 [~

3 .

s 0 | Wi " " W ’ o " ’ —

=4

15}

© .05 L | | | | | | | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Time (ps)

Figure 3: CPA against AES; leakage model: Hamming weight of the output of the SUBBYTES primitive. Beginning of the round
primitives in red: ADDROUNDKEY (ARK), SUBBYTES (SB), SHIFTROWS (ShR), MixCOLUMNS on a column (}1 of the state) (% MC)

0] | I ! T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Correlation Coeff.
-

Time (us)
Figure 4: CPA against AES running on Linux, employing the
Hamming distance between two byte-long stores SUBBYTES

the last stored value, receives a zero value to be stored back into
memory. Finally, the information leakage taking place during the
MixcoLUMNS primitive is due to the load of the output byte from the
SairTRows and its manipulation performed by the function com-
puting its product over F,s through a shift-reduce approach. Since
the compiler did not inline the said function, additional leakage
takes place due to spills and fills into the register file. All these infor-
mation leakages match the Hamming weight of the value computed
by the SUBBYTES primitive, as reported in Table 2. To further vali-
date our microarchitectural leakage model, we exploit its accuracy
to perform an attack on a realistic scenario where the AES block
cipher is run as a userspace process in a full fledged Ubuntu 16.04
environment running on the Olinuxino board. In this scenario, we
did not perform clock gating on any of the peripherals, nor prevent
any processes of the Linux distribution from running, including
the GUI, and the AES process runs with no CPU-affinity set or ele-
vated priority. The only alteration with respect to a regular running
environment was to limit the frequency of the CPU to 120 MHz
due to the limitations of the sampling frequency of the oscilloscope.
To provide a realistic noise for the environment, we installed the
Apache 2.4.18 webserver on the board, set the maximum number
of server processes to 100, and queried the board from a PC via
Ethernet employing the HT TPerf performance testing tool at a rate
of 1000 queries/s. We verified via the HTOP that both the CPU cores
of the Cortex-A7 were at full load, and collected the AES power
consumption in this environment. Figure 4 reports the result of
performing a CPA employing as a leakage model the Hamming
distance between two consecutively stored bytes in the SUBBYTES
primitive on 100 power traces obtained each one as the average of
16 executions of AES on the same input. Despite the reduction in
the absolute value of the Pearson correlation coefficient, the attack
succeeds (the correct key is distinguishable from the best wrong
guess with a statistical confidence > 99%). These results provide a
validation of the reliability of a microarchitectural model to extract
side channel leakage from a complex computing platform, even
with strongly noisy environments which match real world scenar-
ios. We foresee the possibility of integrating such a model within
static analysis and code generation tools employing it as an enabler

for more accurate analyses, easing and automating the mapping of
countermeasure schemes onto implementations.

ACKNOWLEDGEMENTS

This work was supported in part by the EU grants: “SafeCOP” (EC-
SEL RIA) Grant agreement no. 692529, and “M2DC” (H2020 RIA)
Grant agreement no. 688201.

REFERENCES

[1] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.
2014. A Multiple Equivalent Execution Trace Approach to Secure Cryptographic
Embedded Software. In DAC ’14. ACM, 210:1-210:6.

[2] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.
2015. Information leakage chaff: feeding red herrings to side channel attackers.
In Proceedings of the 52nd Annual Design Automation Conference, San Francisco,
CA, USA, June 7-11, 2015. ACM, 33:1-33:6.

[3] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.
2015. The MEET Approach: Securing Cryptographic Embedded Software Against
Side Channel Attacks. IEEE Trans. on CAD of Integrated Circuits and Systems 34,
8 (2015), 1320-1333.

[4] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.
2016. Encasing block ciphers to foil key recovery attempts via side channel.
In Proceedings of the 35th International Conference on Computer-Aided Design,
ICCAD 2016, Austin, TX, USA, November 7-10, 2016, Frank Liu (Ed.). ACM, 96.

[5] Allwinner Technology Co., Ltd. 2013. Allwinner A20 User Manual 2013-03-22.
http://dllinux-sunxi.org/A20/, last accessed 2017-20-11.

[6] ARM Ltd. 2011. Cortex-A7MPCore Reference Manual. http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.ddi0464f/, last accessed 2017-20-11.

[7] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and Francois-

Xavier Standaert. 2014. On the Cost of Lazy Engineering for Masked Software

Implementations. In CARDIS 2014 (LNCS), Vol. 8968. Springer, 64-81.

Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. 2015.

DPA, Bitslicing and Masking at 1 GHz. In CHES 2015. 599-619.

Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, and Olivier

Rioul. 2017. Optimal side-channel attacks for multivariate leakages and multiple

models. J. Cryptographic Engineering 7, 4 (2017), 331-341.

Zhimin Chen, Ambuj Sinha, and Patrick Schaumont. 2013. Using Virtual Secure

Circuit to Protect Embedded Software from Side-Channel Attacks. IEEE Trans.

Computers 62, 1 (2013), 124-136.

Hassan Eldib, Chao Wang, Mostafa M. I. Taha, and Patrick Schaumont. 2015.

Quantitative Masking Strength: Quantifying the Power Side-Channel Resistance

of Software Code. IEEE Trans. on CAD 34, 10 (2015), 1558-1568.

Free Software Foundation and ARM. 2012. ARM Cortex-A7 description.

(2012). https://github.com/gcc-mirror/gec/blob/master/gec/config/arm/cortex-a7.

md, last accessed 2017-20-11.

Daniel Genkin, Itamar Pipman, and Eran Tromer. 2015. Get your hands off my

laptop: physical side-channel key-extraction attacks on PCs - Extended version.

J. Cryptographic Engineering 5, 2 (2015), 95-112.

Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011. Introduction

to Differential Power Analysis. . Cryptographic Engineer. 1, 1 (2011), 5-27.

S. Mangard and K. Schramm. Pinpointing the Side-Channel Leakage of Masked

AES Hardware Implementations. In CHES 2006 (LNCS), Vol. 4249. Springer.

David McCann, Elisabeth Oswald, and Carolyn Whitnall. 2017. Towards Practical

Tools for Side Channel Aware Software Engineering: ’Grey Box’ Modelling for

Instruction Leakages. In USENIX Sec 2017. USENIX Association, 199-216.

OLIMEX Ltd. 2017. A20-olinuxino-MICRO. https://www.olimex.com/Products/

OLinuXino/A20/, last accessed 2017-20-11.

Hermann Seuschek, Fabrizio De Santis, and Oscar M. Guillen. 2017. Side-channel

leakage aware instruction scheduling. In CS2@HiPEAC 2017. ACM, 7-12.

Hermann Seuschek and Stefan Rass. 2016. Side-channel Leakage Models for

RISC Instruction Set Architectures from Empirical Data. Microprocessors and

Microsystems 47 (2016), 74-81.

8

=

[9

[

[10]

[11

[12]

[13]

[14

[15

[16

[7

[18

[19

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20180419081402
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 28.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

